Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
1.
J Transl Med ; 22(1): 341, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594751

RESUMEN

BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Imiquimod/farmacología , Imiquimod/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos , Inmunidad , Microambiente Tumoral
2.
J Diabetes ; 16(4): e13537, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599855

RESUMEN

AIM: Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS: The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS: In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS: Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/tratamiento farmacológico , Hidrogeles/uso terapéutico , Cicatrización de Heridas , Citocinas
3.
ACS Appl Mater Interfaces ; 16(14): 17080-17091, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557004

RESUMEN

Psoriasis is a systemic, recurrent, chronic autoimmune skin disease. However, psoriasis drugs have poor skin permeability and high toxicity, resulting in low bioavailability and affecting their clinical application. In this study, we propose a curcumin-based ionic liquid hydrogel loaded with ilomastat (Cur-Car-IL@Ilo hydrogel), which can effectively maintain the sustained release of drugs and improve the skin permeability of drugs. We used a model of imiquimod-induced psoriasis and demonstrated that local application of Cur-Car-IL@Ilo hydrogel can improve skin lesions in mice with significantly reduced expression levels of inflammatory factors, matrix metalloproteinase 8, and collagen-I. The expressions of iron death-related proteins SLC7A11 and ASL4 were significantly decreased after treatment with Cur-Car-IL@Ilo hydrogel. Flora analysis showed that the content of anaerotruncus, proteus, and UCG-009 bacteria in the gut of psoriatic mice increased. The levels of paludicola, parabacteroides, prevotellaceae_UCG-001, escherichia-shigella, and aerococcus decreased, and the levels of some of the above bacteria tended to be normal after treatment. Therefore, the curcumin-based ionic liquid hydrogel can be used as a multifunctional, nonirritating, noninvasive, and highly effective percutaneous treatment of psoriasis.


Asunto(s)
Curcumina , Líquidos Iónicos , Psoriasis , Ratones , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Hidrogeles/uso terapéutico , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Administración Cutánea , Modelos Animales de Enfermedad
4.
ACS Appl Mater Interfaces ; 16(13): 15993-16002, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38509001

RESUMEN

Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Animales , Ratones , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Hidrogeles/uso terapéutico , Sefarosa , Prótesis e Implantes
5.
Biomater Adv ; 159: 213837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522310

RESUMEN

Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.


Asunto(s)
Hidrogeles , Traumatismos de la Médula Espinal , Humanos , Hidrogeles/uso terapéutico , Poloxámero/química , Poloxámero/uso terapéutico , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Ácido Hialurónico/química , Ácido Hialurónico/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Heparina/farmacología , Heparina/química , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico
6.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542191

RESUMEN

Hyaluronic acid (HA) is a remarkably multifaceted biomacromolecule, playing a role in regulating myriad biological processes such as wound healing, tissue regeneration, anti-inflammation, and immunomodulation. Crosslinked high- and low-molecular-weight hyaluronic acid hydrogels achieve higher molar concentrations, display slower degradation, and allow optimal tissue product diffusion, while harnessing the synergistic contribution of different-molecular-weight hyaluronans. A recent innovation in the world of hyaluronic acid synthesis is represented by NAHYCO® Hybrid Technology, a thermal process leading to hybrid cooperative hyaluronic acid complexes (HCC). This review summarizes the current literature on the in vitro studies and in vivo applications of HCC, from facial and body rejuvenation to future perspectives in skin wound healing, dermatology, and genitourinary pathologies.


Asunto(s)
Ácido Hialurónico , Medicina Regenerativa , Inyecciones Intradérmicas , Cicatrización de Heridas , Hidrogeles/uso terapéutico
7.
BMC Oral Health ; 24(1): 395, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549147

RESUMEN

BACKGROUND: Periodontitis is a chronic inflammatory disease that occurs in tooth-supporting tissues. Controlling inflammation and alleviating periodontal tissue destruction are key factors in periodontal therapy. This study aimed to develop an in situ curcumin/zinc oxide (Cur/ZNP) hydrogel and investigate its characteristics and effectiveness in the treatment of periodontitis. METHODS: Antibacterial activity and cytotoxicity assays were performed in vitro. To evaluate the effect of the in situ Cur/ZNP hydrogel on periodontitis in vivo, an experimental periodontitis model was established in Sprague‒Dawley rats via silk ligature and inoculation of the maxillary first molar with Porphyromonas gingivalis. After one month of in situ treatment with the hydrogel, we examined the transcriptional responses of the gingiva to the Cur/ZNP hydrogel treatment and detected the alveolar bone level as well as the expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the periodontal tissues of the rats. RESULTS: Cur/ZNPs had synergistic inhibitory effects on P. gingivalis and good biocompatibility. RNA sequencing of the gingiva showed that immune effector process-related genes were significantly induced by experimental periodontitis. Carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1), which is involved in the negative regulation of bone resorption, was differentially regulated by the Cur/ZNP hydrogel but not by the Cur hydrogel or ZNP hydrogel. The Cur/ZNP hydrogel also had a stronger protective effect on alveolar bone resorption than both the Cur hydrogel and the ZNP hydrogel. CONCLUSION: The Cur/ZNP hydrogel effectively inhibited periodontal pathogenic bacteria and alleviated alveolar bone destruction while exhibiting favorable biocompatibility.


Asunto(s)
Pérdida de Hueso Alveolar , Curcumina , Compuestos Organometálicos , Periodontitis , Piridinas , Ratas , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Hidrogeles/uso terapéutico , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Periodontitis/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/metabolismo , Porphyromonas gingivalis
8.
Int J Biol Macromol ; 265(Pt 1): 130901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490383

RESUMEN

This study introduces a starch/PVA/g-C3N4 nanocarrier hydrogel for pH-sensitive DOX delivery in breast cancer. DOX was loaded into the nanocarrier with 44.75 % loading efficiency and 88 % Entrapment Efficiency. The release of DOX from the starch/PVA/g-C3N4 hydrogel was pH-sensitive: DOX was released faster in the acidic environment pertinent to cancer tumors (with a pH level of 5.4) than in the surrounding regular tissue environment carrying a more neutral environment (pH 7.4). The release kinetics analysis, encompassing zero-order, first-order, Higuchi, and Korsmeyer-Peppas models, revealed significant fitting with the Higuchi model at both pH 5.4 (R2 = 0.99, K = 9.89) and pH 7.4 (R2 = 0.99, K = 5.70) levels. Finally, we found that hydrogel was less damaging to healthy cells and more specific to apoptotic cells than the drug's free form. The starch/PVA/g-C3N4 hydrogel had low toxicity for both normal cells and breast cancer cells, whereas DOX loaded into the starch/PVA/g-C3N4 hydrogel had higher toxicity for cancer cells than the DOX-only control samples, and led to specific high apoptosis for cancer cells. The study suggests that DOX can be loaded into a starch/PVA/g-C3N4 hydrogel to improve the specificity of the drug's release in cancer tumors or in vitro breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Hidrogeles/uso terapéutico , Almidón/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Concentración de Iones de Hidrógeno , Portadores de Fármacos/uso terapéutico
9.
Int J Biol Macromol ; 265(Pt 1): 130866, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490390

RESUMEN

In a previous study, we separated an active fucoidan (JHCF4) from acid-processed Sargassum fusiforme, then analyzed and confirmed its structure. In the present study, we investigated the potential anti-inflammatory properties of JHCF4 and a JHCF4-based hydrogel in vitro and in vivo. JHCF4 reliably inhibited nitric oxide (NO) production in LPS-induced RAW 264.7 macrophages, with an IC50 of 22.35 µg/ml. Furthermore, JHCF4 attenuated the secretion of prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6, indicating that JHCF4 regulates inflammatory reactions. In addition, JHCF4 downregulated iNOS and COX-2 and inhibited the activation of the MAPK pathway. According to further in vivo analyses, JHCF4 significantly reduced the generation of reactive oxygen species (ROS), NO production, and cell death in an LPS-induced zebrafish model, suggesting that JHCF4 exhibits anti-inflammatory effects. Additionally, a JHCF4-based hydrogel was developed, and its properties were evaluated. The hydrogel significantly decreased inflammatory and nociceptive responses in carrageenan (carr)-induced mouse paws by reducing the increase in paw thickness and decreasing neutrophil infiltration in the basal and subcutaneous layers of the toe epidermis. These results indicate that JHCF4 exhibits potential anti-inflammatory activity in vitro and in vivo and that JHCF4-based hydrogels have application prospects in the cosmetic and pharmaceutical fields.


Asunto(s)
Algas Comestibles , Lipopolisacáridos , Polisacáridos , Sargassum , Ratones , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/uso terapéutico , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Pez Cebra/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sargassum/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , FN-kappa B/metabolismo
10.
Microbiol Res ; 283: 127704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554652

RESUMEN

Candida albicans is the most leading cause of life-threatening fungal invasive infections, especially for vulvovaginal candidiasis (VVC). Resistance and tolerance to common fungicide has risen great demands on alternative strategies for treating C. albicans infections. In the present study, ferroptosis has been proven to occur in C. albicans by directly exposed to FeSO4 via induing hallmarks of ferroptosis, including Fe2+ overload burden, ROS eruption and lipid peroxidation. Transcriptomic profile gave the great hints of the possible mechanism for fungal ferroptosis that FeSO4 disturb pathways associated to ribosome, tyrosine metabolism, triglyceride metabolism and thiamine metabolism, thus mobilizing death-related gene synthesis. Inspired by the results, a FeSO4-loaded hydrogel was prepared as an antifungal agent to treat C. albicans infection. This hydrogel exhibited excellent dressing properties and maintained superior antifungal activity by characterization tests. Besides, mice treated by this composite hydrogel displayed excellent therapeutic efficacy. These results highlighted the potential therapeutic use of FeSO4 as an innovative strategy in treating C. albicans infections by targeting ferroptosis.


Asunto(s)
Candidiasis Vulvovaginal , Ferroptosis , Compuestos Ferrosos , Humanos , Femenino , Animales , Ratones , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Candida albicans/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Hidrogeles/uso terapéutico , Pruebas de Sensibilidad Microbiana
11.
Int J Pharm ; 655: 124053, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537922

RESUMEN

Sildenafil citrate (SIL) as a first-line treatment for erectile dysfunction is currently reported to have poor solubility and bioavailability. Moreover, SIL undergoes first-pass metabolism when taken orally and its injection can lead to discomfort. In this study, we introduce a novel transdermal delivery system that integrates hydrogel-forming microneedles with the inclusion complex tablet reservoir. The hydrogel-forming microneedle was prepared from a mixture of polymers and crosslinkers through a crosslinking process. Importantly, the formulations showed high swelling capacity (>400 %) and exhibited adequate mechanical and penetration properties (needle height reduction < 10 %), penetrating up to five layers of Parafilm® M (assessed to reach the dermis layer). Furthermore, to improve the solubility of SIL in the reservoir, the SIL was pre-complexed with ß-cyclodextrin. Molecular docking analysis showed that SIL was successfully encapsulated into the ß-cyclodextrin cavity and was the most suitable conformation compared to other CD derivatives. Moreover, to maximize SIL delivery, sodium starch glycolate was also added to the reservoir formulation. As a proof of concept, in vivo studies demonstrated the effectiveness of this concept, resulting in a significant increase in AUC (area under the curve) compared to that obtained after administration of pure SIL oral suspension, inclusion complex, and Viagra® with relative bioavailability > 100 %. Therefore, the approach developed in this study could potentially increase the efficacy of SIL in treating erectile dysfunction by being non-invasive, safe, avoiding first-pass metabolism, and increasing drug bioavailability.


Asunto(s)
Ciclodextrinas , Disfunción Eréctil , beta-Ciclodextrinas , Masculino , Humanos , Citrato de Sildenafil/uso terapéutico , Hidrogeles/uso terapéutico , Disponibilidad Biológica , Disfunción Eréctil/tratamiento farmacológico , Ciclodextrinas/uso terapéutico , Simulación del Acoplamiento Molecular
12.
J Mater Chem B ; 12(12): 2938-2949, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38426380

RESUMEN

The standard treatment for non-muscle invasive bladder cancer (NMIBC) is transurethral resection of bladder tumor (TURBT). However, this procedure may miss small lesions or incompletely remove them, resulting in cancer recurrence or progression. As a result, intravesical instillation of chemotherapy or immunotherapy drugs is often used as an adjunctive treatment after TURBT to prevent cancer recurrence. In the traditional method, drugs are instilled into the patient's bladder through a urinary catheter under sterile conditions. However, this treatment exposes the bladder mucosa to the drug directly, leading to potential side effects like chemical cystitis. Furthermore, this treatment has several limitations, including a short drug retention period, susceptibility to urine dilution, low drug permeability, lack of targeted effect, and limited long-term clinical efficacy. Hydrogel, a polymer material with a high-water content, possesses solid elasticity and liquid fluidity, making it compatible with tissues and environmentally friendly. It exhibits great potential in various applications. One emerging use of hydrogels is in intravesical instillation. By employing hydrogels, drug dilution is minimized, and drug absorption, retention, and persistence in the bladder are enhanced due to the mucus-adhesive and flotation properties of hydrogel materials. Furthermore, hydrogels can improve drug permeability and offer targeting capabilities. This article critically examines the current applications and future prospects of hydrogels in the treatment of bladder cancer.


Asunto(s)
Hidrogeles , Neoplasias de la Vejiga Urinaria , Humanos , Hidrogeles/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/cirugía , Sistemas de Liberación de Medicamentos , Administración Intravesical , Resultado del Tratamiento
13.
Biomed Pharmacother ; 173: 116389, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461682

RESUMEN

Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.


Asunto(s)
Antiinfecciosos , Melaleuca , Aceites Volátiles , Infecciones Estafilocócicas , Aceite de Árbol de Té , Porcinos , Animales , Ratones , Staphylococcus aureus , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites Volátiles/química , Melaleuca/química , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antiinfecciosos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
14.
Biomed Pharmacother ; 173: 116309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479180

RESUMEN

As the leading killer of life and health, stroke leads to limb paralysis, speech disorder, dysphagia, cognitive impairment, mental depression and other symptoms, which entail a significant financial burden to society and families. At present, physiology, clinical medicine, engineering, and materials science, advanced biomaterials standing on the foothold of these interdisciplinary disciplines provide new opportunities and possibilities for the cure of stroke. Among them, hydrogels have been endowed with more possibilities. It is well-known that hydrogels can be employed as potential biosensors, medication delivery vectors, and cell transporters or matrices in tissue engineering in tissue engineering, and outperform many traditional therapeutic drugs, surgery, and materials. Therefore, hydrogels become a popular scaffolding treatment option for stroke. Diverse synthetic hydrogels were designed according to different pathophysiological mechanisms from the recently reported literature will be thoroughly explored. The biological uses of several types of hydrogels will be highlighted, including pro-angiogenesis, pro-neurogenesis, anti-oxidation, anti-inflammation and anti-apoptosis. Finally, considerations and challenges of using hydrogels in the treatment of stroke are summarized.


Asunto(s)
Técnicas Biosensibles , Accidente Cerebrovascular , Humanos , Hidrogeles/uso terapéutico , Materiales Biocompatibles , Ingeniería de Tejidos , Accidente Cerebrovascular/tratamiento farmacológico
15.
ACS Nano ; 18(14): 10216-10229, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38436241

RESUMEN

Substantial advancements have been achieved in the realm of cardiac tissue repair utilizing functional hydrogel materials. Additionally, drug-loaded hydrogels have emerged as a research hotspot for modulating adverse microenvironments and preventing left ventricular remodeling after myocardial infarction (MI), thereby fostering improved reparative outcomes. In this study, diacrylated Pluronic F127 micelles were used as macro-cross-linkers for the hydrogel, and the hydrophobic drug α-tocopherol (α-TOH) was loaded. Through the in situ synthesis of polydopamine (PDA) and the incorporation of conductive components, an injectable and highly compliant antioxidant/conductive composite FPDA hydrogel was constructed. The hydrogel exhibited exceptional stretchability, high toughness, good conductivity, cell affinity, and tissue adhesion. In a rabbit model, the material was surgically implanted onto the myocardial tissue, subsequent to the ligation of the left anterior descending coronary artery. Four weeks postimplantation, there was discernible functional recovery, manifesting as augmented fractional shortening and ejection fraction, alongside reduced infarcted areas. The findings of this investigation underscore the substantial utility of FPDA hydrogels given their proactive capacity to modulate the post-MI infarct microenvironment and thereby enhance the therapeutic outcomes of myocardial infarction.


Asunto(s)
Hidrogeles , Infarto del Miocardio , Animales , Conejos , Hidrogeles/uso terapéutico , alfa-Tocoferol/uso terapéutico , Infarto del Miocardio/terapia , Miocardio , Remodelación Ventricular
16.
ACS Biomater Sci Eng ; 10(4): 1921-1945, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457377

RESUMEN

The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/uso terapéutico , Huesos , Regeneración Ósea , Cicatrización de Heridas
17.
Diabetes Obes Metab ; 26(6): 2305-2317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38465784

RESUMEN

AIM: To investigate the differences in utility between conventional dressings and hydrogel dressings for the treatment of diabetic foot ulcer (DFU). METHODS: The PubMed, Embase, Cochrane Library, CNKI, VIP and Wanfang databases were systematically searched up to 21 January 2023. Fixed/random-effect models were used to calculate the odds ratios (ORs) and mean differences (MDs) with 95% confidence intervals (CIs) for the effect size analysis, with heterogeneity determined by I2 statistics. Subgroup analyses of different classes of hydrogel were also conducted. RESULTS: A total of 15 randomized controlled trials with 872 patients were eligible for the present analysis. Compared with conventional dressings, hydrogel dressings significantly improved the healing rate (OR 4.09, 95% CI 2.83 to 5.91), shortened the healing time (MD -11.38, 95% CI -13.11 to -9.66), enhanced granulation formation (MD -3.60, 95% CI -4.21 to -3.00) and epithelial formation (MD -2.82, 95% CI -3.19 to -2.46), and reduced the incidence of bacterial infection (OR 0.10, 95% CI 0.05 to 0.18). CONCLUSION: The meta-analysis showed that hydrogel dressings are more effective in treating DFU compared with conventional dressings.


Asunto(s)
Vendajes , Pie Diabético , Hidrogeles , Cicatrización de Heridas , Pie Diabético/terapia , Humanos , Hidrogeles/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Femenino , Masculino , Vendas Hidrocoloidales , Persona de Mediana Edad
18.
Biomacromolecules ; 25(3): 2041-2051, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38380621

RESUMEN

Triple-negative breast cancer (TNBC), accounting for approximately 20% of breast cancer cases, is a particular subtype that lacks tumor-specific targets and is difficult to treat due to its high aggressiveness and poor prognosis. Chemotherapy remains the major systemic treatment for TNBC. However, its applicability and efficacy in the clinic are usually concerning due to a lack of targeting, adverse side effects, and occurrence of multidrug resistance, suggesting that the development of effective therapeutics is still highly demanded nowadays. In this study, an injectable alginate complex hydrogel loaded with indocyanine green (ICG)-entrapped perfluorocarbon nanoemulsions (IPNEs) and camptothecin (CPT)-doped chitosan nanoparticles (CCNPs), named IPECCNAHG, was developed for photochemotherapy against TNBC. IPNEs with perfluorocarbon can induce hyperthermia and generate more singlet oxygen than an equal dose of free ICG upon near-infrared (NIR) irradiation to achieve photothermal and photodynamic therapy. CCNPs with positive charge may facilitate cellular internalization and provide sustained release of CPT to carry out chemotherapy. Both nanovectors can stabilize agents in the same hydrogel system without interactions. IPECCNAHG integrating IPNEs and CCNPs enables stage-wise combinational therapeutics that may overcome the issues described above. With 60 s of NIR irradiation, IPECCNAHG significantly inhibited the growth of MDA-MB-231 tumors in the mice without systemic toxicity within the 21 day treatment. We speculate that such anticancer efficacy was accomplished by phototherapy followed by chemotherapy, where cancer cells were first destroyed by IPNE-derived hyperthermia and singlet oxygen, followed by sustained damage with CPT after internalization of CCNPs; a two-stage tumoricidal process. Taken together, the developed IPECCNAHG is anticipated to be a feasible tool for TNBC treatment in the clinic.


Asunto(s)
Fluorocarburos , Nanopartículas , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Hidrogeles/uso terapéutico , Oxígeno Singlete , Fototerapia , Verde de Indocianina/farmacología , Línea Celular Tumoral
19.
Biomacromolecules ; 25(3): 1602-1611, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38323536

RESUMEN

Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Péptidos Antimicrobianos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antibacterianos
20.
ACS Biomater Sci Eng ; 10(3): 1661-1675, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38364815

RESUMEN

Intra-articular trauma typically initiates the overgeneration of reactive oxidative species (ROS), leading to post-traumatic osteoarthritis and cartilage degeneration. Xanthan gum (XG), a branched polysaccharide, has shown its potential in many biomedical fields, but some of its inherent properties, including undesirable viscosity and poor mechanical stability, limit its application in 3D printed scaffolds for cartilage regeneration. In this project, we developed 3D bioprinted XG hydrogels by modifying XG with methacrylic (MA) groups for post-traumatic cartilage therapy. Our results demonstrated that the chemical modification optimized the viscoelasticity of the bioink, improved printability, and enhanced the mechanical properties of the resulting scaffolds. The XG hydrogels also exhibit decent ROS scavenging capacities to protect stem cells from oxidative stress. Furthermore, XGMA(H) (5% MA substitution) exhibited superior chondrogenic potential in vitro and promoted cartilage regeneration in vivo. These dual-functional XGMA hydrogels may provide a new opportunity for cartilage tissue engineering.


Asunto(s)
Antioxidantes , Hidrogeles , Polisacáridos Bacterianos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Hidrogeles/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Andamios del Tejido/química , Especies Reactivas de Oxígeno , Cartílago , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA